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(Received May 21,1983) 

Mass-density and charge-density current fluctuations are approximately independent collective 
dynamical variables at  wavelengths greater than several mean interionic spacings. For shorter 
wavelengths this is no longer true, and they can interact strongly. We have investigated the effect 
of this mass-charge coupling on single particle motion in molten NaCl. Its influence on the 
diffusion coefficients, in this case, is quite small, but it significantly changes the form of the 
velocity autocorrelation functions. It is clear that the effect of mass-charge coupling must be 
included in microscopic theories of ionic dynamics. 

1 INTRODUCTION 

In microscopic studies of ionic dynamics in molten salts, the quantities of 
primary interest are the mass and charge density correlation functions, and 
the interplay between mass and charge effects. Even when attention is 
concentrated on single particle motion, through the velocity autocorrela- 
tion function, the coupling of an individual ion to mass and charge current 
density fluctuations is emphasised. 

Recent theories of ionic dynamics have been largely confined to the simple 
molten salt (SMS), where the two ion species differ only in the sign of the 
charge they carry.’-3 Despite the simplification, there is disagreement about 
the way in which the coupling to mass and charge current fluctuations is 
manifested in the velocity correlation function. In Munakata’s and Bosse’s 
work,2 charge density fluctuations appear explicitly, through the memory 
function. In contrast, Gaskell and Woolfson3 express the correlation 
function entirely in terms of the mass current fluctuations, and the charge is 
significant through its effect on the structure of the liquid. Thereason for this 
is that charge ordering effects tend to suppress the mass density fluctuations, 
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102 M .  S.  WOOLFSON A N D  T. GASKELL 

with the result that individual ionic motion is not coupled to well defined 
collective modes. This, it is argued, explains why the velocity autocorrelation 
function shows no tendency to oscillate as it decays, in agreement with com- 
puter simulation data. 

The latter authors have extended their work to a more realistic model of a 
binary salt and derived the following expressions for the velocity autocorrela- 
tion functions. 

(1.1) 
m+ 
2m 

+ ~ (Am + 2m-)CMQ(q,t)  

- 

(1.2) I + (Am - 2m’)CMQ(q, t )  F;(q, t )  2m 

where 

Jt(t)  and eJf(t) are momentum and charge current density fluctuations, 
m = (mf + m-) /2  is the mean mass of an ion pair, Am = m- - m+ and N 
is the total number of ions. Finally F,(q, r )  refers to the Fourier transform 
of a self-correlation function, and f ( q )  essentially that of a step function 
(introduced in the definition of the velocity field) whose width is the ion- 
sphere radius, a = (3/47~n)’/~, n being the total number density. 

These results were applied to NaC1,” but in the absence of computer 
data of the low order moments, we used results for the functions CMM(q, t )  
and CQQ(q, t )  from current models appropriate to the SMS. Because of the 
relatively small mass difference between the ions in NaCI, it was argued that 
this would be a reasonable first approximation. One problem, however, 
is avoided in this liquid model. Because of the symmetry in the SMS, the 
mass and charge currents are independent so that CMQ(q, t )  = 0 for all t ,  
and mass-charge coupling effects are completely ignored. 
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IONIC DYNAMICS IN MOLTEN SALTS 103 

In the long wavelength limit the coupling between mass and charge fluctua- 
tion variables is small. At shorter wavelengths, however, mass and charge 
fluctuations interact strongly, and in more realistic models such cross- 
correlations inevitably appear. Their effects can be important at small t, 
as pointed out in the latter reference. For example, the inclusion of CMQ(q, t )  
is essential to obtain the correct coefficient of tZ ,  in the small t expansion of 
$ ' ( I )  and $ - ( t )  from (1.1) and (1.2). It was decided, therefore, to make a more 
thorough assessment of their significance in ionic dynamics. We construct 
more realistic estimates for the low order moments appearing in the current 
correlation functions (more details are given in Section 2), and at the same 
time include the cross term CMQ(q, t). It is shown that the effects of mass- 
charge coupling are significant. 

In Section 2 we outline the framework used. It was originally proposed by 
Abramo et al.,' to calculate the partial structure factors in a binary salt. 
The idea is to construct two dynamical variables which are linear combina- 
tions of the cation and anion density fluctuations, with wavevector-de- 
pendent coefficients which are chosen so that the linear combinations are 
approximately independent. The longitudinal component of CMQ(q, t )  is 
easily obtained from the partial structure factors, although the memofy 
functions we use are different from those suggested in the above reference. 
The technique is extended to the transverse components, and in Section 3, the 
results we obtain for the velocity autocorrelation functions in NaCl, are 
reported. 

2 THEORETICAL FRAMEWORK 

Each of the currents in Eqs. (1.3) is expressed as one longitudinal and two 
transverse components, defined with respect to the direction of the wave- 
vector q. The longitudinal components are essentially second time deriva- 
tives of the appropriate density fluctuations, and we discuss this type of 
current autocorrelation function first. 

Longitudinal components 

Defining the Fourier components of the cation and anion densities as 
N +  N -  

n,'(t) = 1 exp(iq . r+(t)), n;(t) = C exp(iq f r;(t)) 
i= 1 j =  1 

the appropriate linear combinations are 
~ : ( t )  =  sin O,ni ( t )  + (m-)'/* cos Q,n;(t) 

~ i ( t )  = (m+)'" cos O,n,'(t) - (m-)'I2 sin O,n;(t) 
(2.1) 
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104 M .  S. WOOLFSON A N D  T. GASKELL 

As stated above, at long wavelengths the mass and charge density fluctua- 
tions are approximately independent. An imposed requirement, therefore, is 
that A:(t)  and A i ( t )  should be proportional to mass and charge density 
fluctuations as q -, 0. At the other extreme the ions behave as free particles. 
In this limit appropriate independent variables are proportional to n l  ( t )  
and n;(t). Hence O4 should have the following ‘boundary’ conditions. 

so that 
1 

lim A:(t) = ___ (rn+n,f(t)  + m-n,(t)) 
4-0 (2m)”’ 

and 

ii) 

so that 

lim sin O4 = 0, lim cos 0, = 1 
4- m 9+  m 

lim ~ : ( t )  = (m-)”2nq(t)  
4 - m  

and 

lim ~ i ( t )  = (m+)’”n,‘(t) 

We can regard the dynamical variables A;(t) ,  A i ( t )  as the components of a 
column matrix, and describe their time evolution by a generalized Langevin 
equation. The matrix of correlation functions can be formally expressed in 
terms of a hierarchy or memory function matrices. The reader is referred to 
the paper by Abramo et aL5 for details. 

We write Sa,(q, t )  = ( A “ _ ( O ) A ~ ( t ) ) / N ,  where the brackets denote a 
canonical ensemble average over the initial phase space. Equal time values 
will be referred to as Sap(q), and its Fourier-Laplace transform as Saa(q, w). 
Ideally, the mixing parameter 8, is chosen to diagonalize the matrix S,,(q, t). 
The above limits on 8, can be met, and the diagonalization very nearly 
achieved, by chosing 

4+ m 

Gzo2(q) = d Z ( d  (2.2) 
Following the notation of Abramo et a/., we have introduced the quantities 
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IONIC DYNAMICS IN MOLTEN SALTS 10.5 

and 

d&) = (- 1 > " + p ~ ~ ~ 2 ~ , ~ ( 4 > c ~ 1 1 ( 4 ) s , , ( q )  - s;2(q)l- 

with E denoting the component different from CI. Condition (2.2) is equivalent 
to diagonalization of the dynamical matrix for longitudinal modes in the 
lattice vibration problem of ionic crystals. Simplifications are made, on the 
basis of symmetry requirements, by neglecting off-diagonal, second order 
memory functions. 

The expressions for the dynamic structure factor then become 

where 

rii)(q, t )  are first order memory functions which appear in the generalized 
Langevin equations. Finally, we obtain the longitudinal currents C$q, r ) ,  
through the equation 

Now the quantities Jf(t) and J:(t), which we introduced in Section I, 
are given by 

where 
N +  

j:(t) = Cv+(t)exp(iq. r+(t) 
i = l  

and 
N -  

j;(t) = 1 v;(t)exp(iq . r i ( t ) )  
j =  1 

Their longitudinal components are essentially linear combinations of the 
time derivations of n;(t) and n;(t). By inverting the transformation (2.1), we 
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106 M. S. WOOLFSON AND T. GASKELL 

can readily express the current correlation functions (1.3) as linear combina- 
tions of the Ckp(q, t )  defined in (2.6). In particular, 

[Am sin 20, - 2(m+m-)"2 cos 20,] 
1 

CF"(q9 t )  = 2(m+PPz-)1/2 

x CC?,(q, t )  - G,(% t)l 
1 

[Am cos 28, + 2(m+m-)li2 sin 28,]cf2(q, t )  
(rn+ m-)1'2 

+ 
(2.8) 

Provided that we are able to construct the two memory functions r'il)(q, t) 
and ri1j(q, t),  we can calculate the current correlation functions on the right 
hand side of the above equation. Abramo et al. assume a simple exponential 
time-dependence. The relaxation time is determined by a prescription 
proposed by L ~ v e s e y , ~  or a rather more elaborate alternative.6 However, 
it is clear from the work of Adams et a/.,' that a single relaxation time model is 
inadequate in molten salts. They demonstrate that a more appropriate form 
would be 

(2.9) 

Although there is no computer simulation data of the parameter j(q), or 
the relaxation times, we have this information for the mass and charge 
current autocorrelation f~nc t ions .~  We have utilized it in the following way, 
to estimate the memory functions. 

i) For the thermodynamic state investigated by Adams ef al., both 
C'f'(q, t )  and CfQ(q,  t )  have the same, q-independent, value for zk,(q). We 
also use it in (2.9). 

ii) Data is available for qa 5 7. For qa > 7 (where P(q) is very small), 
we choose rf,(q) = (w,",(q) - m ~ a ( q ) ) - " 2  a form which has proved useful 
b e f ~ r e . ~  

iii) Cf,(q,  t) and C$,(q, t )  may each be expressed as linear combinations 
of C y M ( q ,  t), CfQ(q, t )  and CyQ(q,  t),  with 0,-dependent coefficients. Although 
CyQ(q, t )  is significant, it is not the dominant term for qa < 7. We ignore its 
contribution, as a first approximation, and by means of a least squares fit to 
the C f M ( q ,  t), CfQ(q,  t )  data, determine the parameters in the memory 
function. The zf,(q) values obtained in this way turn out to be consistent with 
the above approximation for qa = 7. 

iv) Given the latter we calculate Cf,(q, t) ,  and through Eq. (2.8) estimate 
the mass-charge coupling term CfQ(q,  t ) .  In principle this cycle can be re- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



IONIC DYNAMICS IN MOLTEN SALTS I07 

peated, but this time retaining our first approximation for CfQ(q,  t )  to obtain 
a more accurate memory function. It is a rather lengthy and tedious process, 
but we find after one cycle that C&(y, t )  is very nearly diagonal. We take the 
results as adequate for our present purpose, bearing in mind the earlier 
simplifications which have been made in the theory. 

It should be mentioned that the moments co,",(q) and ~ :~ (q )can  be calculated 
from the zeroth, second and fourth moments of SMM(q, u), SQQ(q, co) and 
SMQ((q, u). Formal expressions for these have been derived by Abramo 
rf id.' In the absence of computer data for the moments in NaCl, we evaluate 
the expressions by using the radial distribution functions which have been 
tabulated for the SMS,9 but with the correct mass-dependent coefficients 
of each term. The justification for the procedure stems from the predominant 
influence of the electrostatic component of the interionic interaction on the 
structure of the liquid. 

Transverse components 

The formalism outlined above can also be adapted to evaluqte CyQ(q, t).  
In this case we choose the approximately independent variables to be 

and 
A,2(r) = (rn + ) 112 cos 0, j&(t) - (m-)''' sin 0, jiT(,(t) (2.10) 

where j,&(t), jiT(r) refer to the transverse components of the current density 
fluctuations defined in (2.7). In this case we introduce 

and Tz&y, w) as its Fourier-Laplace transform. At the limits of the wave- 
number range, sin 8, and cos O4 take the same values as for the longitudinal 
components. These will follow if we choose 8, through the condition which is 
the transverse equivalent of (2.2), namely 

00 

oy2(q)  = 1 dwo2cT2(q, co) = 0 (2.1 1) 
2n -oo 

Apart from the limits y + 0 and (1 + x, the angle 8, will of course be dif- 
ferent from that obtained for the longitudinal currents. 

Unfortunately, we know only the zeroth and second moments of e&(q: w), 
and we have to introduce approximations to the matrix of memory functions 
r$)(y, t )  (in the notation of Abramo et al.). Once again we neglect off- 
diagonal elements in this matrix. It follows from this, bearing in mind the 
constraint (2.1 l), that rL:)(y, t )  = 0, and because of the different structure of 
the equations in the transverse case that CTZ(y, t )  = 0. Thus as a conse- 
quence of our approximations, which are consistent with those made in our 
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1 o x  M. S. WOOLFSON AND T. GASKELL 

treatment of the longitudinal modes, there is no coupling betwcen the 
variables A t ( t )  and Ai(t) .  As a further consequence, we may show that 

(2.12) 

This memory function, Tho)(q, w), is related to TLi)(q, w) by the equation 

(2.13) 

In the single relaxation-time approximation, l=L;)(q, o) is replaced by a wave- 
number-dependent relaxation time. As before we believe that a more 
convincing form for the memory function is 

(2.14) 

The parameters in this expression are determined in the way we outlined when 
discussing the longitudinal components. The one modification being that 
for 9a > 7 we put z:,(q) = (w,T,(q>)- li’. Our calculation of the mass-charge 
coupling also follows the same procedure, although because CrE(q, f) = 0, 
the latter is given by 

(2.15) 

In the next section we report some results for the velocity autocorrelations 
in NaCl, on the basis of Eqs. (1.1) and (1.2). The only remaining terms in 
the equations, which need to be specified, are the self correlation functions 
F:(q, t )  and Fs-(q, t). We use the well-known Gaussian approximation to 
construct these, with appropriate values for the diffusion coefficients. 
Because the diffusion process is slow, compared to momentum transfer, 
the self correlation functions do not have a significant effect on the results. 
This point is demonstrated if we ignore diffusion by putting F:(y, t )  = 
Fs-(q, t )  = 1 (see Figure 3). Indeed, it is the great disparity between the 
diffusion rate and the rate of momentum transfer, which makes this method so 
effective in the discussion of velocity correlations in liquids. 

3 RESULTS AND DISCUSSION 

For the model investigated by Adams et a/.,’ the Coulombic coupling 
parameter r = e’/akT is 77.5, n = 0.0308 ions k3, and the system simulates 
molten NaCl at a temperature of 1090 K. The time-dependent data is plotted 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



IONIC DYNAMICS I N  MOLTEN SALTS 10‘) 

1.0 

0.8 

0-6 

0.4 

0.2 

0 

-0.2 
FIGURE 1 Normalized velocity autocorrelation function for Na’ ion (dotted curve) 
obtained from Eq. (1.1). Also shown is the result (full curve) when mass-charge coupling term is 
omitted, and the contribution from charge current fluctuations (dashed curve). 

in terms of opt, where wp = (27~ne’/p)’’~ is the plasma frequency, p = 
mfm-/ (m+ + m-) being the reduced mass. Under the conditions of the 
computer ‘experiment,’ wp = 4.4 x loi3 s - ’ .  We model the memory 
functions using this data; but in constructing the moments we have been 
obliged to use structure data from the SMS, for conditions in which r = 
64.6.9 Nevertheless, the fact that the structure data from these two sources is 
strikingly similar, leads us to believe that these inconsistencies will not be 
serious enough to invalidate our conclusions about the effect of the mass- 
charge coupling term. 

In Figure 1 we show the velocity autocorrelation function for the Na+ ion, 
as given by (1.1). We also include the result from (1.1) when the mass-charge 
coupling term is omitted, as well as the contribution from the charge current 
autocorrelation function CQa(q, t). The same information for the C1- ion 
is reported in Figure 2. Because of the weak dependence of the results on 
F a ( 4 ,  t ) ,  the coupling of the ionic motion to the charge current fluctuations 
has very nearly the same magnitude for each ion, but of opposite sign. Its 
contribution to the velocity correlation function is proportional to the mass 
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1.0 

0.8 

0.6 

0 4  

0.2 

0 

- 0.2 

I 

FIGURE 2 Normalized velocity autocorrelation function for CI- ion (dotted curve) obtained 
from (1.2). The full curve is the result when the mass-charge coupling term is omitted, and the 
dashed curve represents the contribution from the charge current fluctuations. 

difference Am, and in this application its effect is not very dramatic. It does, 
however, make a significant contribution to the depth of the first minimum 
in $'(t), whilst acting in the opposite sense for the heavier ion. 

When the effect of the mass-charge contribution is compared in the two 
figures, its most important influence is in displacing the curves relative to the 
time axis, but in opposite directions for the respective ions. That is it separates 
i,b'(t) and $ - ( t )  to a degree which brings the results more in line with com- 
puter simulation data. This is consistent with the behaviour at small t, as 
demonstrated by a direct calculation of the small f expansion of the auto- 
correlation functions. Including CMQ((q, t )  increases the magnitude of the 
coefficient of t2 for $'(t) and decreases it for $-(t). Clearly, if one attempts to 
explain computer data on velocity correlation functions on the basis of a 
theory which involves mass and charge fluctuations in the binary salt, the 
interaction of these variables must also be taken into account. 
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I X I  *, + 
-0.2 1 in" 

FIGURE 3 The dotted curve shows the velocity autocorrelation function for the Na' ion. 
The crosses give the result obtained from Eq. ( 1 . 1 )  with F;(q, t )  = 1. 

Equations (1.1) and (1.2) contain a theory of the self-diffusion coefficient 
in the salt, and we conclude the discussion with the following remarks 
about the diffusion mechanism. 

i) Assuming a value for the self-diffusion coefficient, D+, of the Na+ 
ions," the root mean square displacement of an ion after 2.7 x s 
(which is the period covered by the curves in Figures 1 and 2) is only 1.3 A- 
about one third of the mean interionic separation. Not surprisingly, if we 
neglect the diffusion of the ion in our theory of the velocity autocorrelation 
function, the outcome is not significantly different. This is demonstrated 
explicitly in Figure 3, where we show the result obtained from (1.1) by putting 
F:(q, t )  = 1, which is its initial value. These observations will be valid for 
other liquids with similar packing fractions. 

ii) The self-diffusion coefficients are obtained through the equation, 

D* = - kT JOmdt$*(t) 
m' 
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I12 M .  S. WOOLFSON AND T. GASKELL 

If we use the simplification F'(q, t )  = 1, the time integral of the longitudinal 
component for each of the currents is zero. Even with the complete expres- 
sions for J/+(t)  and J/-(t), it is clear that the transverse components largely 
determine the diffusion coefficients. 

iii) The mass currents make virtually the same contribution to the self- 
diffusion coefficient of each type of ion. The charge current introduces a 
direct connection to the conductivity of the salt, and is most significant for 
thecation (being proportional to 6). Its effect is to increase the ratio D+/D-.  
It is clear from Figures 1 and 2 that the mass-charge coupling term behaves 
in an oscillatory fashion, and in this application its influence on the diffusion 
coefficients is quite small, although acting in such a way as to reduce the 
ratio D'/D- .  
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